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ABSTRACT 

This paper presents an overview of layered structures of piezoelectric materials. Developments of layered 

structures in piezoelectric materials are presented. Finally, a brief summary of the approaches discussed is 

provided and future trends in this field are identified. 
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I. INTRODUCTION 

 

Piezoelectric material is such that when it is subjected 

to a mechanical load, it generates an electric charge. 

This effect is usually called the “piezoelectric effect”. 

Conversely, when piezoelectric material is stressed 

electrically by a voltage, its dimension change. This 

phenomenon is known as the “inverse piezoelectric 

effect”. The study of piezoelectricity was initiated by J. 

and P. Curie in 1880 [1]. They found that certain 

crystalline materials generate an electric charge 

proportional to a mechanical stress. Since then new 

theories and applications of the field have been 

constantly advanced [2-10]. Voigt [2] developed the 

first complete and rigorous formulation of 

piezoelectricity in 1890. Since then several books on 

the phenomenon and theory of piezoelectricity have 

been written. Among them are the references by 

Cady [3], Tiersten [4], Parton and Kudryavtsev [5], 

Ikeda [6], Rogacheva [7], Qin [8-11], and Qin and 

Yang [12]. The first of these [2] treated the physical 

properties of piezoelectric crystals as well as their 

practical applications, the second [3] dealt with the 

linear equations of vibrations in piezoelectric 

materials, and the third and fourth [4, 5] gave a more 

detailed description of the physical properties of 

piezoelectricity. Rogacheva [7] presented general 

theories of piezoelectric shells. Qin [8-11] discussed 

Green’s functions, advanced theory, and fracture 

mechanics of piezoelectric materials as well as 

applications to bone remodelling. Micromechanics of 

the piezoelectricity were discussed in [12]. These 

advances have resulted in a great number of 

publications including journal and conference papers. 

These include but not limit to applications to 

Branched crack problems[13-15], experimental 

investigation of bone materials [16-21], multi-field 

problems of bone remodelling [22-29], decay analysis 

of dissimilar laminates [30], moving crack problems 

[31], anti-plane crack problems [32, 33], fibre-pull out 

[34], fibre-push out [35-37], problems of frog 

Sartorius muscles [38], effective property evaluation 

[39-42], Green’s function analysis [43-50], derivation 

of general solutions [51-55], boundary element 

analysis [56-63], micro-macro crack interaction 

problems [64], Trefftz finite element analysis [65-70], 

crack-inclusion problems [71, 72], crack growth 

problem [73, 74], multi-crack problems [75], crack-

interface problems [76-78], closed crack-tip analysis 

[79], crack-path selection [80], penny-shaped crack 

analysis [81, 82], logarithmic singularity analysis [83], 

multi-layer piezoelectric actuator [84, 85], Symplectic 

mechanics analysis [86], fibre-reinforced composites 

[87], interlayer stress analysis [88], coupled thermo-

electro-chemo-mechanical analysis [89], and damage 

analysis [90, 91].   
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Based on the analysis above, the present review 

consists of two major sections. Problems of multilayer 

magneto-electro-elastic plates adhesively bonded by 

viscoelastic interlayer are discussed in Section 2. 

Section 3 focuses on solutions of layered magneto-

electro-elastic cylindrical shell with viscoelastic 

interlayer. Finally, a brief summary on these sections 

is provided and areas that need further research are 

identified. 

 

II.  magneto-electro-elastic plates adhesively bonded 

by viscoelastic interlayer 

 

All formulations in this section are taken from the 

work of Wu et al [92]. In their paper, they consider 

simply supported multilayer magneto-electro-elastic 

plate adhesively bonded by viscoelastic interlayer 

subjected to transverse loading. We discuss here 

analytical solutions, rather than numerical solutions 

of engineering problems [93-110]. As shown in Figure 

1, we consider a layered plate of length a, width b and 

thickness H, consisting of p orthotropic magneto-

electro-elastic layers of thickness , which are 

adhesively bonded by p-1 viscoelastic interlayers, 

each of thickness ∆h. The plate is simply supported at 

four sides and loaded by distributed mechanical 

loading q(x,y) acting over the top surface. A Cartesian 

coordinate O-xyz is established with the origin O 

located at the corner of the bottom surface.  and 

 denote the distances from the lower and upper 

surfaces of the i-th layer to the bottom surface of the 

plate, respectively. 

 

 

Figure 1. Multilayer magneto-electro-elastic plate 

with viscoelastic interlayer. 

Basic equations of a magneto-electro-elastic layer 

Based on the 3D equations of magneto-electro-

elasticity, the coupled constitutive equations for i-th 

magneto-electro-elastic layer can be given in the form 

of tensor, as follows: 

, , 

, i=1,2…p,          (1) 

where , , , ,  and  stand for the 

stress, strain, electric displacement, electric field, 

magnetic induction and magnetic field, respectively; 

, , , ,  and  are elastic, piezoelectric, 

piezo-magnetic, dielectric, magnetic-permeability and 

magneto-electric constants, respectively, which are 

detailly expressed in Eq. (A1) in Appendix A. The 

general strain-displacement relations are governed by 

, , , i=1,2…p,                                

(2) 

where ,  and  are elastic displacement, 

electric and magnetic potentials, respectively, and 

. The equilibrium equations, in 

absence of body forces, electric charge and current 

density, are given by  

, , , i=1,2…p.             (3)                             

By using the state approach [111], the partial 

differential equations for the out-of-plane variables 

can be obtained from Eqs. (1)-(3), as follows  

, i=1,2…p,        (4)                              

where  is given in Eq. (A2) in Appendix A;  is 

the state vector including ten out-of-plane variables, 

i.e., . 

The boundary conditions for the simply supported 

plate can be expressed by 

, at x=0, a,  (5) 

        , at y=0, b.                                               

For this boundary conditions, the ten out-of-plan 

variables in  can be expanded in the double 

Fourier series form: 
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, 

i=1,2…p,                      (6) 

where  and . By substituting Eq. 

(6) into Eq. (4), one obtains  

, m,n=1,2,3…, i=1,2… p,   (7)                               

where 

; 

is defined in Eq. (A3) in Appendix A. The 

solution of Eq. (7) is , 

m,n=1,2,3…, i=1,2… p,                                               (8)                             

where  is a 

vector involving undetermined time-varying 

coefficients. Let us define 

 

, 

m,n=1,2,3…, i=1,2…p.    (9) 

 

By employing Eqs. (1) and (2), other in-plane 

variables can be expressed by the out-of-plane 

variables 

 

 

 

 

, 

, 

, 

i=1,2…p.                  (10) 

where 

. 

 

Basic equations of an adhesive interlayer 

By the use of the standard linear solid model, the 

shear modulus of the adhesive interlayer is expressed 

as 

*
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where the superscript * means that the corresponding 

variable belongs to the interlayer,  denotes the 

relaxation time ( ),  the viscosity,  

the relaxation moduli and  the long-term moduli. 

These parameters for viscoelastic materials can be 

tested by creep experiments [112]. The Poisson’s ratio 

of the interlayer  is assumed to be time-

independent. Thus, the corresponding Young’s 

modulus can be expressed by  

.                                          (12) 

According to the theory for linear viscoelasticity 

[113], the constitutive equations in the interlayer are 
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These relations indicate the memory effect, i.e. the 

stress at a time is dependent on both current strain 

and strain history. For briefness, Eq. (13) is rewritten 

into the Stieltjes convolution form [114] 

,  

,  
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i

yz = , i=1,2…p-1,              (14) 

where the symbol  means the convolution 

operation. Recalling assumption (2), the strains in the 

interlayer can be further expressed as 

, 

, 
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i=1,2…p-1.                                                                (15) 
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The electric conditions between adjacent layers can 

be classified into three cases: (i) weakly dielectrically 

conducting condition; (ii) highly dielectrically 

conducting condition; (iii) the unelectroded condition 

[115]. For the first case, the normal electric 

displacement is continuous while the electric 

potential is discontinuous along the thickness 

direction. For the second case, the normal electric 

displacement and the electric potential are, 

respectively, discontinuous and continuous. The 

normal electric displacement and the electric 

potential in the third case are both continuous. The 

three electric conditions can be described as 
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in which, =0 and >0 represent the first 

condition, >0 and =0 represent the second and 

= =0 is the last one. 

  The magnetic variables are assumed to be continuous 

along the adjacent layers, i.e. 
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Continuous and surface conditions 

By combining Eqs. (6), (8), (9) and (14)-(17), the 

continuous conditions between the adjacent magneto-

electro-elastic layers can be rearranged as 
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The boundary loadings, electric and magnetic 

conditions on the upper and lower surfaces are 

expressed  
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By substituting Eqs. (6), (8) and (9) into Eq. (20) and 

then rearranging the results into matrix form, we 

have 
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where the subscript T means the transpose of the 

matrix, and  denotes a 10×1 null sub-matrix. By 

combining Eqs. (18) and (22), a relation between 

 and  can be obtained:  
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, , ,  and , as follows 
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The coefficients for i-th layer can be expressed by 
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where  is the j-th element of . 

1. Laplace transformation 
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in which, s denotes the Laplace transformation 

variable; the variable with an over curve means the 

variable is in Laplace transformation shape;  is a (3p-

3)×(3p-3) unit matrix; ,  and  are (3p-3)×(2p-

2), (2p-2)×(3p-3) and (2p-2)×(2p-2) null matrices, 

respectively; the elements in  and  are given 

in Eq. (A4) in Appendix A. By using the Cramer’s law 

to solve Eq. (26), , , ,  

and  can be written into the fractional 

expression of s 
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will be  kinds of results, and  is the sum of 

the all results.  is the result that the j-th (3p-2 j

5p-5) column of each determinant in  is 

replaced by . Examples for  and  are 

given in Appendix B. Eq. (27) can be furthermore 

decomposed as 

, m,n=1,2,3…, j=1,2…(5p-5),   (28) 

where  is the root of =0 and 

.  

  The inversed Laplace transformation of Eq. (28) is  

, m,n=1,2,3…, j=1,2…(5p-5). (29) 

  Finally, by substituting Eq. (29) into Eq. (24), and 

then substituting the results into Eqs. (8) and (10), the 

solution of the time-varying stress, electric 

displacement, magnetic induction, elastic 

displacement, electric and magnetic potential fields 

for the plate can all be obtained. 

 

It should be pointed out that the present method is 

also suitable for other boundary conditions. For 

example, the clamped edge can be equivalent to a 

simply supported one subject to a horizontally 

distributed loading which can be further determined 

by the zero displacement condition at the clamped 

edge. 

 

III. Layered Magneto-Electro-Elastic Cylindrical 

Shell 

 

In this section we present a brief review of the results 

given in [116]. As shown in Figure 2, a layered 

cylindrical shell is designed with internal radius R1, 

external radius R2, thickness H, angle θ0 and infinite 

length, consisting of p MEE layers with each 

thickness hi, adhesively bonded by thin viscoelastic 

interlayers with same thickness h . A cylindrical 

coordinate system O-θrz is established to identify the 

location in the shell. Let id0  and id1  represent the 

distances from the internal and external surfaces of i-

th MEE layer to the circle center O, respectively. The 

shell is simply supported and acted by a radial load 

)(F  at the external surface. We deem the 

cylindrical shell in the state of generalized plane 

strain, which means the variables associated with 

stress, displacement, electric and magnetic fields are 

constant along z direction.  

 

The present study complies with four assumptions:  

 

(1) The shell deformation is small and within the 

linearity range.  

(2) The adhesive interlayer is far thinner than the 

MEE layers, i.e. Δhhi. 

(3) Based on the previous assumption, the interlayer 

displacement is assumed to be linearly distributed 

along the radial direction, which means the 

interlayer strain is constant through radial 

direction.  

(4) The interlayer, made of adhesive, is relatively soft 

in comparison with the MEE layer; thus, its 

circumferential normal stress layer is negligible.  

 
 

Figure 2. Layered magneto-electro-elastic cylindrical 

shell with viscoelastic interlayers 

 

Stroh-type general solution for a MEE layer 
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strain-displacement relations in generalized plane 

stain state are governed by 
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ru  are elastic displacement, and i  
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The simply supported boundary condition can be 

expressed as 
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where 0/ mm = . In view of the differential in 

Eqs. (29) and (30), the extended displacements and 

extended out-of-plane stresses are taken as the 

following form  
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By substituting Eqs. (32) and (33) into Eqs. (28)-(30), 

two relations with respect to )(ti

ma  and )(ti

mb  are 

obtained 
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where 
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The second equation in Eq. (34) can be recast into a 

standard eigenvalue equation, as follows 
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Further, the general solution for the extended 

displacements and extended out-of-plane stresses is 

obtained 
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where i

mB  is a diagonal matrix including 10 

eigenvalues of Eq, (35), i

mE  is a matrix consisting of 

10 corresponding eigenvectors, and )(ti
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column vector containing 10 unknown coefficients 
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where )(1 rimW  and )(2 rimW  are both 5×10 sub-

matrixes. By reusing Eqs. (28)-(30), the general 

solution for the extended in-plane stresses can be 

expressed by  
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Equations of an adhesive interlayer 

By employing the SLS model, the shear modulus in 

the interlayer is given by  
*
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where the variables with superscript * belong to the 

interlayer, *

G  denotes the relaxation time, *

1G  the 

relaxation moduli and *

2G  the long-term moduli. 

These parameters can be measured by the creep test. 

For simplicity, the Poisson’s ratio in the interlayer *  

is assumed to be time-independent. Therefore, the 

Young’s modulus in the interlayer can be expressed 

by  
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According to the linear viscoelasticity theory, the 
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, i=1,2…p, m=1,2,3….         (41) 

This equation indicates the memory effect of 
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viscoelasticity, i.e., the stress at a time depends on not 

only the current strain but also the strain history. For 

briefness, Eq. (41) is then rewritten into the Stieltjes 

convolution form as follows 
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where the symbol   means the convolution 
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Recalling the third assumption, the strains in the 

interlayer can be expressed as 
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  The imperfect electric conditions between adjacent 

layers are also considered, which can be given by 
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This equation can express three conditions: (i) weakly 

dielectrically conducting condition, i.e., 1 =0, 2 >0; 

(ii) highly dielectrically conducting condition, i.e., 

1 >0, 2 =0; (iii) the unelectroded condition, i.e., 1

= 2 =0.  

  Here, the magnetic conditions between layers are 

assumed to be perfect, i.e.,  
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Solution for the layered system 

  In view of Eq. (32), the applied load is also expanded 

into Fourier series, as follows 
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Meanwhile, the adjacent conditions of Eqs. (43)-(46) 
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By combining the surface conditions as well as the 

adjacent conditions, a matrix equation for the 

unknown coefficients are obtained, as follows 
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in which, 10  is a 10×10 null matrix, and 20  is a 5×10 

null matrix. By virtue of Cramer’s law of linear 

equations, the unknown coefficients can be expressed 

by the interlayer strains  
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)(

,

q
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mΩ  with the vector )(
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kB , )(r

kB   and )(qB , 

respectively, in which,  
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By conducting Laplace transformation to Eqs.    (39) 

and (42), one obtains 
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m=1,2,3…,                      (52) 

where the variable with an over curve represents it is 

in Laplace transformation shape. By substituting Eq. 

(51) into Eq. (36) and then substituting the results 

into Eq. (52), the equations for the interlayer strains 

are obtained 
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where I  is the unit matrix, the details of mA  and 

mH  are given in Eq. (A2) of Appendix A, and 
Tp
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By reusing the Cramer’s law of linear equations, the 

solution of interlayer strains in Laplace 

transformation shape is obtained 
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where )(sP j

m


 is the j-th element of )(smΡ


, and 













−=

−

=




−

=

−−−−

−−

=

,33,

,430],)/1([

43

0

,

33*33

33

0

,

,

pkL

pkCL

p

n

j

nm

kp

G

kp

np

k

n

j

nm

j

mk





 

kp

G

kp

np

k

n

nmmk CJ −−−−

−−

=

= 33*33

33

0

,, )/1(  ,   

in which, 
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!

bab

a
Cba

−
= ; according to the 

permutation and combination theory, if arbitrary n 

columns in the determinant || mA  are replaced by the 

same columns of , there will be n

pC 33 −  kinds of 

results, and nmJ ,  is the sum of all results. An example 

for nmJ ,  is given in Appendix B. Let us define that 

|| j

mA  is the result that the j-th column of || mA  is 

replaced by the column vector mH . If arbitrary n 

columns of || j

mA , except for j-th column, are 

replaced by the same columns of I , there will be 
n

pC 43 −  kinds of results, and j

nmL ,  is the sum of all 

results. An example for j

nmL ,  is given in Appendix B. 

The inversed Laplace transformation of Eq. (54) is  

I
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where mls ,  (l=1,2…3p-2) is the root of the function of 
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By substituting Eq. (55) into Eq. (51), the coefficients 

)(ti

mC  are determined. Finally, the solution for each 

MEE layer is obtained by substituting )(ti

mC  into Eq. 

(36). 

 

It should be mentioned that the present method can 

also be applied to other boundary conditions. For 

example, the clamped boundary condition can be 

equivalent to a simply supported one acted by a 

distributed load at the edge which can be further 

determined by the zero displacement condition at the 

clamped edge. 

 

IV. CONCLUSIONS AND FUTURE 

DEVELOPMENTS 

 

On the basis of the preceding discussion, following 

conclusions can be drawn. This review presents an 

overall view on layered structures of piezoelectric 

materials.   

 

It is recognized that study on piezoelectric materials 

becomes a hot topic and has become increasingly 

popular due their widely applications in engineering 

fields. However, there are still many possible 

extensions and areas in need of further development 

in the future. Among those developments one could 

list the following: 

1. Development of efficient Trefftz finite element-

boundary element method schemes for complex 

piezoelectric structures and the related general 

purpose computer codes with preprocessing and 

postprocessing capabilities. 

2. Applications of piezoelectric composites to MEMS 

and smart devices and development of the 

associated design and fabrication approaches.  

3. Extension of the Trefftz-finite element method to 

elastodynamics of piezoelectric structures, 

dynamics of thin and thick plate bending and 

fracture mechanics for structures containing 

piezoelectric sensor and actuators. 

4. Development of multiscale framework across from 

continuum to micro- and nano-scales for modeling 

piezoelectric materials and structures.  
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